NuBBE: research for the development and sustainable use of the biodiversity The paper is: Valli M1, dos Santos RN, Figueira LD, Nakajima CH, Castro-Gamboa I, Andricopulo AD, Bolzani VS. Development of a natural products database from the biodiversity of Brazil. J Nat Prod. 2013 Mar 22;76(3):439-44. doi: 10.1021/np3006875. Epub 2013 Jan 18. We are grateful to the authors for creating and curating this database and thank them for allowing us to incorporate its structures in ZINC.
We assess the chemical diversity of a subset by clustering the molecules. First, we sort ligands by increasing molecular weight. Then, we use the SUBSET 1.0 algorithm ( Voigt JH, Bienfait B, Wang S, Nicklaus MC. JCICS, 2001, 41, 702-12) to progressively select compounds that differ from those previously selected by at least the Tanimoto cutoff, using ChemAxon default fingerprints. The resulting representatives have two interesting properties:
Tanimoto Cutoff Level | 60% | 70% | 80% | 90% | 100% |
---|---|---|---|---|---|
Number of Representatives | 47 | 58 | 72 | 91 | 147 |
We compute the physical properties of each molecule in the subset, and graph them below.
Download Calculated Physical Properties
Format | Reference(pH 7) | Mid(pH 6-8) | High(pH 8-9.5) | Low(pH 4.5-6) | Download Unix |
Download Windows |
---|---|---|---|---|---|---|
SMILES | All | All | All | All | ||
MOL2 | All | All | All | All | Single Usual Metals All | Single Usual Metals All |
SDF | All | All | All | All | Single Usual Metals All | Single Usual Metals All |
Flexibase | Not Available | Not Available | Not Available | Not Available |